bit::gauss
— Echelon Form Access
If the gauss
object was constructed from the system \(A \cdot x = b\) these methods provide read-only access to the reduced row echelon form of the bit-matrix \(A\) and also to the equivalently transformed bit-vector \(b\).
- 1
- Returns a read-only reference to the reduced row echelon form of the bit-matrix \(A\).
- 2
- Returns a read-only reference to the equivalently transformed bit-vector \(b\).
On construction, a gauss
object computes the reduced row echelon form of the input bit-matrix \(A\) using elementary row operations. It performs the same operations on a copy of the input bit-vector \(b\). The two methods here let you look at the transformed left-hand side bit-matrix and right-hand side bit-vector.
Example
#include <bit/bit.h>
int
()
main{
std::size_t m = 12;
auto A = bit::matrix<>::random(m);
auto b = bit::vector<>::random(m);
std::cout << "Solving the system A.x = b for the following A & b:\n";
(A, b);
print
// Create a solver object for the system
::gauss<> solver(A, b);
bit
// Print some general information
std::cout << "Number of equations in system: " << solver.equation_count() << '\n';
std::cout << "Rank of the matrix A: " << solver.rank() << '\n';
std::cout << "Number of free variables: " << solver.free_count() << '\n';
std::cout << "Number of solutions to A.x = b: " << solver.solution_count() << '\n';
// Also have a look at the echelon form of A and the equivalently transformed b
std::cout << "The echelon forms of A & b are:\n";
(solver.lhs(), solver.rhs());
print}
Output (depends on the values of the random inputs)
Solving the system A.x = b for the following A & b:
011100100101 0
000111011100 1
111101000011 1
010000111110 1
110011110000 1
101100100100 1
011010110010 0
010010000111 1
101110110001 0
001100101110 1
100000011010 1
111111010100 1
Number of equations in system: 12
Rank of the matrix A: 11
Number of free variables: 1
Number of solutions to A.x = b: 2
The echelon forms of A & b are:
100000000000 1
010000000000 0
001000000000 1
000100000000 0
000010000100 0
000001000000 0
000000100100 1
000000010000 1
000000001000 0
000000000010 1
000000000001 0
000000000000 0