GF2++
Loading...
Searching...
No Matches
gf2::BitSet< N, Word >

A fixed-size vector over GF(2) with N bit elements compactly stored in a standard vector of primitive unsigned words whose type is given by the template parameter Word. The elements in a bitset are initially all set to 0. More...

#include <BitSet.h>

Inheritance diagram for gf2::BitSet< N, Word >:
gf2::BitStore< BitSet< N, usize > >

Public Types

using word_type = Word
 The underlying unsigned word type used to store the bits.

Public Member Functions

BitStore Required Methods.
constexpr usize size () const
 Returns the number of bit-elements in the bitset.
constexpr usize words () const
 Returns the number of words in the bitset's underlying word store.
constexpr Word word (usize i) const
 Returns word i from the bitset's underlying word store.
constexpr void set_word (usize i, Word word)
 Sets word i in the bitset's underlying word store to value (masked if necessary).
constexpr const Word * data () const
 Returns a const pointer to the underlying store of words .
constexpr Word * data ()
 Returns a pointer to the underlying store of words.
constexpr u8 offset () const
 Returns the offset (in bits) of the first bit in the store within the first word.
Helper Methods:
constexpr void clean ()
 Sets any unused bits in the last occupied word to 0.
Required methods:

The BitStore subclasses implement the following methods ...

constexpr void set_word (usize i, word_type value)
 This method sets "word" at index i to the specified value.
Individual bit reads:
constexpr bool get (usize i) const
 Returns true if the bit at the given index i is set, false otherwise.
constexpr bool operator[] (usize index) const
 Returns the boolean value of the bit element at index.
constexpr bool front () const
 Returns true if the first bit element is set, false otherwise.
constexpr bool back () const
 Returns true if the last bit element is set, false otherwise.
Individual bit mutators:
auto set (usize index, bool value=true)
 Sets the bit-element at the given index to the specified boolean value & returns this for chaining. The default value for value is true.
auto flip (usize index)
 Flips the value of the bit-element at the given index and returns this for chaining/.
constexpr auto swap (usize i0, usize i1)
 Swaps the bits in the bit-store at indices i0 and i1 and returns this for chaining.
Store queries:
constexpr bool is_empty () const
 Returns true if the store is empty, false otherwise.
constexpr bool any () const
 Returns true if at least one bit in the store is set, false otherwise.
constexpr bool all () const
 Returns true if all bits in the store are set, false otherwise.
constexpr bool none () const
 Returns true if no bits in the store are set, false otherwise.
Store mutators:
auto set_all (bool value=true)
 Sets the bits in the store to the boolean value and returns a reference to this for chaining.
auto flip_all ()
 Flips the value of the bits in the store and returns a reference to this for chaining.
Store fills:
auto copy (Src src)
 Copies the bits from an unsigned integral src value and returns a reference to this for chaining.
auto fill (std::invocable< usize > auto f)
 Fill the store by repeatedly calling f(i) and returns a reference to this for chaining.
auto random_fill (double p=0.5, u64 seed=0)
 Fill the store with random bits and returns a reference to this for chaining.
Bit counts:
constexpr usize count_ones () const
 Returns the number of set bits in the store.
constexpr usize count_zeros () const
 Returns the number of unset bits in the store.
constexpr usize leading_zeros () const
 Returns the number of leading zeros in the store.
constexpr usize trailing_zeros () const
 Returns the number of trailing zeros in the store.
Set bit indices:
std::optional< usizefirst_set () const
 Returns the index of the first set bit in the bit-store or {} if no bits are set.
std::optional< usizelast_set () const
 Returns the index of the last set bit in the bit-store or {} if no bits are set.
std::optional< usizenext_set (usize index) const
 Returns the index of the next set bit after index in the store or {} if no more set bits exist.
std::optional< usizeprevious_set (usize index) const
 Returns the index of the previous set bit before index in the store or {} if there are none.
Unset bit indices:
std::optional< usizefirst_unset () const
 Returns the index of the first unset bit in the bit-store or {} if no bits are unset.
std::optional< usizelast_unset () const
 Returns the index of the last unset bit in the bit-store or {} if no bits are unset.
std::optional< usizenext_unset (usize index) const
 Returns the index of the next unset bit after index in the store or {} if no more unset bits exist.
std::optional< usizeprevious_unset (usize index) const
 Returns the index of the previous unset bit before index in the store or {} if no more unset bits exist.
Iterators:
constexpr auto bits () const
 Returns a const iterator over the bool values of the bits in the const bit-store.
constexpr auto set_bit_indices () const
 Returns an iterator over the indices of any set bits in the bit-store.
constexpr auto unset_bit_indices () const
 Returns an iterator over the indices of any unset bits in the bit-store.
constexpr auto store_words () const
 Returns a const iterator over all the words underlying the bit-store.
constexpr auto to_words () const
 Returns a copy of the words underlying this bit-store.
Spans:
constexpr auto span (usize begin, usize end) const
 Returns an immutable bit-span encompassing the bits in the half-open range [begin, end).
Sub-vectors:
constexpr auto sub (usize begin, usize end) const
 Returns a clone of the elements in the half-open range [begin, end) as a new bit-vector.
constexpr void split_at (usize at, BitVec< word_type > &left, BitVec< word_type > &right) const
 Views a bit-store as two parts containing the elements [0, at) and [at, size()) respectively.
Riffling:
constexpr void riffle_into (BitVec< word_type > &dst) const
 Interleaves the bits of this bit-store with zeros storing the result into the bit-vector dst.
constexpr auto riffled () const
 Returns a new bit-vector that is the result of riffling the bits in this bit-store with zeros.
Bit shifts:
constexpr void operator<<= (usize shift)
 In-place left shift of the bit-store by shift bits.
constexpr void operator>>= (usize shift)
 In-place right shift of the bit-store by shift bits.
constexpr auto operator<< (usize shift) const
 Returns a new bit-vector that is lhs shifted left by shift bits.
constexpr auto operator>> (usize shift) const
 Returns a new bit-vector that is lhs shifted right by shift bits.
Bit-wise operations:
void operator^= (const BitStore< Rhs > &rhs)
 In-place XOR with another equal-sized bit-store.
void operator&= (const BitStore< Rhs > &rhs)
 In-place AND with another equal-sized bit-store.
void operator|= (const BitStore< Rhs > &rhs)
 In-place OR with another equal-sized bit-store.
auto operator~ () const
 Returns a new bit-vector that has the same bits as the current bit-store but with all the bits flipped.
auto operator^ (const BitStore< Rhs > &rhs) const
 Returns a new bit-vector that is the XOR of the current bit-store and another equal-sized bit-store.
auto operator& (const BitStore< Rhs > &rhs) const
 Returns a new bit-vector that is the AND of the current bit-store and another equal-sized bit-store.
auto operator| (const BitStore< Rhs > &rhs) const
 Returns a new bit-vector that is the OR of the current bit-store and another equal-sized bit-store.
Arithmetic operations:
void operator+= (const BitStore< Rhs > &rhs)
 In-place addition of this bit-store with the an equal-sized rhs bit-store.
void operator-= (const BitStore< Rhs > &rhs)
 In-place subtraction of this bit-store with the an equal-sized rhs bit-store.
auto operator+ (const BitStore< Rhs > &rhs) const
 Returns a new bit-vector that is the + of this store with the passed (equal-sized) rhs bit-store.
auto operator- (const BitStore< Rhs > &rhs) const
 Returns a new bit-vector that is the - of this store with the passed (equal-sized) rhs bit-store.
String representations:
std::string to_string (std::string_view sep="", std::string_view pre="", std::string_view post="") const
 Returns a binary string representation of the store.
std::string to_pretty_string () const
 Returns a "pretty" string representation of the store.
std::string to_binary_string (std::string_view sep="", std::string_view pre="", std::string_view post="") const
 Returns a binary string representation of the store.
std::string to_hex_string () const
 Returns the "hex" string representation of the bits in the bit-store.
std::string describe () const
 Returns a multi-line string describing the bit-vector in some detail.

Static Public Attributes

static constexpr u8 bits_per_word = BITS<Word>
 The number of bits per Word.

Detailed Description

template<usize N, unsigned_word Word = usize>
class gf2::BitSet< N, Word >

A fixed-size vector over GF(2) with N bit elements compactly stored in a standard vector of primitive unsigned words whose type is given by the template parameter Word. The elements in a bitset are initially all set to 0.

BitSet<N> is similar to std::bitset<N> but has a different interface and a richer set of functionality.

The BitSet class inherits from the base gf2::BitStore class. We implement a small number of required methods and then inherit the majority of our functionality from that base.

Note
Inheritance is done using the CRTP to avoid all runtime virtual method dispatch overhad..

Member Function Documentation

◆ all()

bool gf2::BitStore< BitSet< N, usize > >::all ( ) const
inlineconstexprinherited

Returns true if all bits in the store are set, false otherwise.

Note
Empty stores have no set bits (logical connective for all is AND with identity true).

Example

BitVec v{3};
assert_eq(v.all(), false);
v.set(0);
v.set(1);
v.set(2);
assert_eq(v.all(), true);
constexpr bool all() const
Returns true if all bits in the store are set, false otherwise.
Definition BitStore.h:327
auto set(usize index, bool value=true)
Sets the bit-element at the given index to the specified boolean value & returns this for chaining....
Definition BitStore.h:191
A dynamically-sized vector over GF(2) with bit elements compactly stored in a standard vector of prim...
Definition BitVec.h:37

◆ any()

bool gf2::BitStore< BitSet< N, usize > >::any ( ) const
inlineconstexprinherited

Returns true if at least one bit in the store is set, false otherwise.

Note
Empty stores have no set bits (logical connective for any is OR with identity false).

Example

BitVec v{10};
assert_eq(v.any(), false);
v.set(0);
assert_eq(v.any(), true);
constexpr bool any() const
Returns true if at least one bit in the store is set, false otherwise.
Definition BitStore.h:308

◆ back()

bool gf2::BitStore< BitSet< N, usize > >::back ( ) const
inlineconstexprinherited

Returns true if the last bit element is set, false otherwise.

Note
In debug mode the method panics of the store is empty.

Example

auto v = BitVec<>::ones(10);
assert_eq(v.back(), true);
v.set_all(false);
assert_eq(v.back(), false);
static constexpr BitVec ones(usize n)
Factory method to generate a bit-vector of length n where the elements are all 1.
Definition BitVec.h:220

◆ bits()

auto gf2::BitStore< BitSet< N, usize > >::bits ( ) const
inlineconstexprinherited

Returns a const iterator over the bool values of the bits in the const bit-store.

You can use this iterator to iterate over the bits in the store and get the values of each bit as a bool.

Note
For the most part, try to avoid iterating through individual bits. It is much more efficient to use methods that work on whole words of bits at a time.

Example

auto u = BitVec<u8>::ones(10);
for (auto&& bit : u.bits()) assert_eq(bit, true);

◆ clean()

template<usize N, unsigned_word Word = usize>
void gf2::BitSet< N, Word >::clean ( )
inlineconstexpr

Sets any unused bits in the last occupied word to 0.

This is used to enforce the guarantee that unused bits in the store are always set to 0.

◆ copy()

auto gf2::BitStore< BitSet< N, usize > >::copy ( Src src)
inlineinherited

Copies the bits from an unsigned integral src value and returns a reference to this for chaining.

Notes:

  1. The size of the store must match the number of bits in the source type.
  2. We allow any unsigned integral source, e.g. copying a single u64 into a BitVec<u8> of size 64.
  3. The least-significant bit of the source becomes the bit at index 0 in the store.

Example

BitVec<u8> v{16};
u16 src = 0b1010101010101010;
v.copy(src);
assert_eq(v.to_string(), "0101010101010101");
w.copy(src);
assert_eq(w.to_string(), "0101010101010101");
std::string to_string(std::string_view sep="", std::string_view pre="", std::string_view post="") const
Returns a binary string representation of the store.
Definition BitStore.h:1606
auto copy(Src src)
Copies the bits from an unsigned integral src value and returns a reference to this for chaining.
Definition BitStore.h:412
std::uint16_t u16
Word type alias for a 16-bit unsigned integer.
Definition unsigned_word.h:32

◆ count_ones()

usize gf2::BitStore< BitSet< N, usize > >::count_ones ( ) const
inlineconstexprinherited

Returns the number of set bits in the store.

Example

BitVec v{10};
assert_eq(v.count_ones(), 0);
v.set(0);
assert_eq(v.count_ones(), 1);
constexpr usize count_ones() const
Returns the number of set bits in the store.
Definition BitStore.h:601

◆ count_zeros()

usize gf2::BitStore< BitSet< N, usize > >::count_zeros ( ) const
inlineconstexprinherited

Returns the number of unset bits in the store.

Example

BitVec v{10};
assert_eq(v.count_zeros(), 10);
v.set(0);
assert_eq(v.count_zeros(), 9);
constexpr usize count_zeros() const
Returns the number of unset bits in the store.
Definition BitStore.h:616

◆ data() [1/2]

template<usize N, unsigned_word Word = usize>
Word * gf2::BitSet< N, Word >::data ( )
inlineconstexpr

Returns a pointer to the underlying store of words.

Note
The pointer is non-const but you should be careful about using it to modify the words in the store.

Example

v.set_all();
auto ptr = v.data();
assert_eq(*ptr, 0b1111'1111);
A fixed-size vector over GF(2) with N bit elements compactly stored in a standard vector of primitive...
Definition BitSet.h:24
constexpr const Word * data() const
Returns a const pointer to the underlying store of words .
Definition BitSet.h:113
auto set_all(bool value=true)
Sets the bits in the store to the boolean value and returns a reference to this for chaining.
Definition BitStore.h:371

◆ data() [2/2]

template<usize N, unsigned_word Word = usize>
const Word * gf2::BitSet< N, Word >::data ( ) const
inlineconstexpr

Returns a const pointer to the underlying store of words .

Example

v.set_all();
auto ptr = v.data();
assert_eq(*ptr, 0b1111'1111);

◆ describe()

std::string gf2::BitStore< BitSet< N, usize > >::describe ( ) const
inlineinherited

Returns a multi-line string describing the bit-vector in some detail.

This method is useful for debugging but you should not rely on the output format which may change.

◆ fill()

auto gf2::BitStore< BitSet< N, usize > >::fill ( std::invocable< usize > auto f)
inlineinherited

Fill the store by repeatedly calling f(i) and returns a reference to this for chaining.

Example

BitVec v{10};
v.fill([](usize i) { return i % 2 == 0; });
assert_eq(v.size(), 10);
assert_eq(v.to_string(), "1010101010");
auto fill(std::invocable< usize > auto f)
Fill the store by repeatedly calling f(i) and returns a reference to this for chaining.
Definition BitStore.h:536
constexpr usize size() const
Returns the number of bit-elements in the bit-vector.
Definition BitVec.h:64
std::size_t usize
Word type alias for the platform's "native"-sized unsigned integer.
Definition unsigned_word.h:41

◆ first_set()

std::optional< usize > gf2::BitStore< BitSet< N, usize > >::first_set ( ) const
inlineinherited

Returns the index of the first set bit in the bit-store or {} if no bits are set.

Example

auto v = BitVec<u8>::zeros(37);
assert(v.first_set() == std::optional<usize>{});
v.set(2);
assert(v.first_set() == std::optional<usize>{2});
v.set(2, false);
assert(v.first_set() == std::optional<usize>{});
v.set(27);
assert(v.first_set() == std::optional<usize>{27});
BitVec empty;
assert(empty.first_set() == std::optional<usize>{});
std::optional< usize > first_set() const
Returns the index of the first set bit in the bit-store or {} if no bits are set.
Definition BitStore.h:684
static constexpr BitVec zeros(usize n)
Factory method to generate a bit-vector of length n where the elements are all 0.
Definition BitVec.h:212

◆ first_unset()

std::optional< usize > gf2::BitStore< BitSet< N, usize > >::first_unset ( ) const
inlineinherited

Returns the index of the first unset bit in the bit-store or {} if no bits are unset.

Example

auto v = BitVec<u8>::ones(37);
assert(v.first_unset() == std::optional<usize>{});
v.set(2, false);
assert(v.first_unset() == std::optional<usize>{2});
v.set(2);
assert(v.first_unset() == std::optional<usize>{});
v.set(27, false);
assert(v.first_unset() == std::optional<usize>{27});
BitVec empty;
assert(empty.first_unset() == std::optional<usize>{});
std::optional< usize > first_unset() const
Returns the index of the first unset bit in the bit-store or {} if no bits are unset.
Definition BitStore.h:803

◆ flip()

auto gf2::BitStore< BitSet< N, usize > >::flip ( usize index)
inlineinherited

Flips the value of the bit-element at the given index and returns this for chaining/.

Note
In debug mode the index is bounds-checked.

Example

auto v = BitVec<u8>::ones(10);
v.flip(0);
assert_eq(v.to_string(), "0111111111");
v.flip(1);
assert_eq(v.to_string(), "0011111111");
v.flip(9);
assert_eq(v.to_string(), "0011111110");

◆ flip_all()

auto gf2::BitStore< BitSet< N, usize > >::flip_all ( )
inlineinherited

Flips the value of the bits in the store and returns a reference to this for chaining.

Example

auto v = BitVec<u8>::zeros(10);
v.flip_all();
assert_eq(v.to_string(), "1111111111");

◆ front()

bool gf2::BitStore< BitSet< N, usize > >::front ( ) const
inlineconstexprinherited

Returns true if the first bit element is set, false otherwise.

Note
In debug mode the method panics of the store is empty.

Example

auto v = BitVec<>::ones(10);
assert_eq(v.front(), true);
v.set_all(false);
assert_eq(v.front(), false);

◆ get()

bool gf2::BitStore< BitSet< N, usize > >::get ( usize i) const
inlineconstexprinherited

Returns true if the bit at the given index i is set, false otherwise.

Note
In debug mode the index i is bounds-checked.

Example

BitVec v{10};
assert_eq(v.get(0), false);
v.set(0);
assert_eq(v.get(0), true);
constexpr bool get(usize i) const
Returns true if the bit at the given index i is set, false otherwise.
Definition BitStore.h:123

◆ is_empty()

bool gf2::BitStore< BitSet< N, usize > >::is_empty ( ) const
inlineconstexprinherited

Returns true if the store is empty, false otherwise.

Example

assert_eq(v.is_empty(), true);
BitVec u{10};
assert_eq(u.is_empty(), false);
constexpr bool is_empty() const
Returns true if the store is empty, false otherwise.
Definition BitStore.h:295

◆ last_set()

std::optional< usize > gf2::BitStore< BitSet< N, usize > >::last_set ( ) const
inlineinherited

Returns the index of the last set bit in the bit-store or {} if no bits are set.

Example

auto v = BitVec<u8>::zeros(37);
assert(v.last_set() == std::optional<usize>{});
v.set(2);
assert(v.last_set() == std::optional<usize>{2});
v.set(27);
assert(v.last_set() == std::optional<usize>{27});
BitVec empty;
assert(empty.last_set() == std::optional<usize>{});
std::optional< usize > last_set() const
Returns the index of the last set bit in the bit-store or {} if no bits are set.
Definition BitStore.h:706

◆ last_unset()

std::optional< usize > gf2::BitStore< BitSet< N, usize > >::last_unset ( ) const
inlineinherited

Returns the index of the last unset bit in the bit-store or {} if no bits are unset.

Example

auto v = BitVec<u8>::ones(37);
assert(v.last_unset() == std::optional<usize>{});
v.set(2, false);
assert(v.last_unset() == std::optional<usize>{2});
v.set(2);
assert(v.last_unset() == std::optional<usize>{});
v.set(27, false);
assert(v.last_unset() == std::optional<usize>{27});
BitVec empty;
assert(empty.last_unset() == std::optional<usize>{});
std::optional< usize > last_unset() const
Returns the index of the last unset bit in the bit-store or {} if no bits are unset.
Definition BitStore.h:832

◆ leading_zeros()

usize gf2::BitStore< BitSet< N, usize > >::leading_zeros ( ) const
inlineconstexprinherited

Returns the number of leading zeros in the store.

Example

BitVec v{37};
assert_eq(v.leading_zeros(), 37);
v.set(27);
assert_eq(v.leading_zeros(), 27);
auto w = BitVec<u8>::ones(10);
assert_eq(w.leading_zeros(), 0);
constexpr usize leading_zeros() const
Returns the number of leading zeros in the store.
Definition BitStore.h:629

◆ next_set()

std::optional< usize > gf2::BitStore< BitSet< N, usize > >::next_set ( usize index) const
inlineinherited

Returns the index of the next set bit after index in the store or {} if no more set bits exist.

Example

auto v = BitVec<u8>::zeros(37);
assert(v.next_set(0) == std::optional<usize>{});
v.set(2);
v.set(27);
assert(v.next_set(0) == std::optional<usize>{2});
assert(v.next_set(2) == std::optional<usize>{27});
assert(v.next_set(27) == std::optional<usize>{});

◆ next_unset()

std::optional< usize > gf2::BitStore< BitSet< N, usize > >::next_unset ( usize index) const
inlineinherited

Returns the index of the next unset bit after index in the store or {} if no more unset bits exist.

Example

auto v = BitVec<u8>::ones(37);
assert(v.next_unset(0) == std::optional<usize>{});
v.set(2, false);
v.set(27, false);
assert(v.next_unset(0) == std::optional<usize>{2});
assert(v.next_unset(2) == std::optional<usize>{27});
assert(v.next_unset(27) == std::optional<usize>{});
BitVec empty;
assert(empty.next_unset(0) == std::optional<usize>{});
std::optional< usize > next_unset(usize index) const
Returns the index of the next unset bit after index in the store or {} if no more unset bits exist.
Definition BitStore.h:860

◆ none()

bool gf2::BitStore< BitSet< N, usize > >::none ( ) const
inlineconstexprinherited

Returns true if no bits in the store are set, false otherwise.

Note
Empty store have no set bits (logical connective for none is AND with identity true).

Example

BitVec v{10};
assert_eq(v.none(), true);
v.set(0);
assert_eq(v.none(), false);
constexpr bool none() const
Returns true if no bits in the store are set, false otherwise.
Definition BitStore.h:355

◆ offset()

template<usize N, unsigned_word Word = usize>
u8 gf2::BitSet< N, Word >::offset ( ) const
inlineconstexpr

Returns the offset (in bits) of the first bit in the store within the first word.

This is always zero for BitSet.

◆ operator&()

auto gf2::BitStore< BitSet< N, usize > >::operator& ( const BitStore< Rhs > & rhs) const
inlineinherited

Returns a new bit-vector that is the AND of the current bit-store and another equal-sized bit-store.

Note
In debug mode, this method panics if the lengths of the two bit-stores do not match.

Example

auto v2 = ~v1;
auto v3 = v1 & v2;
assert_eq(v3.to_string(), "0000000000");
static constexpr BitVec alternating(usize n)
Factory method to generate a bit-vector of length n looking like 101010....
Definition BitVec.h:255

◆ operator&=()

void gf2::BitStore< BitSet< N, usize > >::operator&= ( const BitStore< Rhs > & rhs)
inlineinherited

In-place AND with another equal-sized bit-store.

Note
In debug mode, this method panics if the lengths of the two bit-stores do not match.

Example

v1 &= ~v1;
assert_eq(v1.to_string(), "0000000000");

◆ operator+()

auto gf2::BitStore< BitSet< N, usize > >::operator+ ( const BitStore< Rhs > & rhs) const
inlineinherited

Returns a new bit-vector that is the + of this store with the passed (equal-sized) rhs bit-store.

In GF(2) subtraction is the same as XOR.

Note
In debug mode, this methods panics if the lengths of lhs and rhs do not match.

Example

auto v2 = ~v1;
auto v3 = v1 + v2;
assert_eq(v3.to_string(), "1111111111");

◆ operator+=()

void gf2::BitStore< BitSet< N, usize > >::operator+= ( const BitStore< Rhs > & rhs)
inlineinherited

In-place addition of this bit-store with the an equal-sized rhs bit-store.

In GF(2) addition is the same as XOR.

Note
In debug mode, this methods panics if the lengths of lhs and rhs do not match.

Example

v1 += ~v1;
assert_eq(v1.to_string(), "1111111111");

◆ operator-()

auto gf2::BitStore< BitSet< N, usize > >::operator- ( const BitStore< Rhs > & rhs) const
inlineinherited

Returns a new bit-vector that is the - of this store with the passed (equal-sized) rhs bit-store.

In GF(2) subtraction is the same as XOR.

Note
In debug mode, this methods panics if the lengths of lhs and rhs do not match.

Example

auto v2 = ~v1;
auto v3 = v1 - v2;
assert_eq(v3.to_string(), "1111111111");

◆ operator-=()

void gf2::BitStore< BitSet< N, usize > >::operator-= ( const BitStore< Rhs > & rhs)
inlineinherited

In-place subtraction of this bit-store with the an equal-sized rhs bit-store.

In GF(2) subtraction is the same as XOR.

Note
In debug mode, this methods panics if the lengths of lhs and rhs do not match.

Example

v1 -= ~v1;
assert_eq(v1.to_string(), "1111111111");

◆ operator<<()

auto gf2::BitStore< BitSet< N, usize > >::operator<< ( usize shift) const
inlineconstexprinherited

Returns a new bit-vector that is lhs shifted left by shift bits.

Shifting is in vector-order so if v = [v0,v1,v2,v3] then v << 1 is [v1,v2,v3,0] with zeros added to the right. Left shifting in vector-order is the same as right shifting in bit-order.

Note
Only accessible bits are affected by the shift.

Example

auto v = BitVec<u8>::ones(20);
auto w = v << 8;
assert_eq(w.to_string(), "11111111111100000000");

◆ operator<<=()

void gf2::BitStore< BitSet< N, usize > >::operator<<= ( usize shift)
inlineconstexprinherited

In-place left shift of the bit-store by shift bits.

Shifting is in vector-order so if v = [v0,v1,v2,v3] then v <<= 1 is [v1,v2,v3,0] with zeros added to the right. Left shifting in vector-order is the same as right shifting in bit-order.

Note
Only accessible bits are affected by the shift.

Example

auto v = BitVec<u8>::ones(20);
v <<= 8;
assert_eq(v.to_string(), "11111111111100000000");

◆ operator>>()

auto gf2::BitStore< BitSet< N, usize > >::operator>> ( usize shift) const
inlineconstexprinherited

Returns a new bit-vector that is lhs shifted right by shift bits.

Shifting is in vector-order so if v = [v0,v1,v2,v3] then v >>= 1 is [0,v0,v1,v2] with zeros added to the left. Right shifting in vector-order is the same as left shifting in bit-order.

Note
Only accessible bits are affected by the shift.

Example

auto v = BitVec<u8>::ones(20);
auto w = v >> 8;
assert_eq(w.to_string(), "00000000111111111111");

◆ operator>>=()

void gf2::BitStore< BitSet< N, usize > >::operator>>= ( usize shift)
inlineconstexprinherited

In-place right shift of the bit-store by shift bits.

Shifting is in vector-order so if v = [v0,v1,v2,v3] then v >>= 1 is [0,v0,v1,v2] with zeros added to the left. Right shifting in vector-order is the same as left shifting in bit-order.

Note
Only accessible bits are affected by the shift.

Example

auto v = BitVec<u8>::ones(20);
v >>= 8;
assert_eq(v.to_string(), "00000000111111111111");

◆ operator[]()

bool gf2::BitStore< BitSet< N, usize > >::operator[] ( usize index) const
inlineconstexprinherited

Returns the boolean value of the bit element at index.

Note
In debug mode the index is bounds-checked.

Example

BitVec v{10};
assert(v[2] == false);
v[2] = true;
assert(v[2] == true);
assert(v.to_string() == "0010000000");

◆ operator^()

auto gf2::BitStore< BitSet< N, usize > >::operator^ ( const BitStore< Rhs > & rhs) const
inlineinherited

Returns a new bit-vector that is the XOR of the current bit-store and another equal-sized bit-store.

Note
In debug mode, this method panics if the lengths of the two bit-stores do not match.

Example

auto v2 = ~v1;
auto v3 = v1 ^ v2;
assert_eq(v3.to_string(), "1111111111");

◆ operator^=()

void gf2::BitStore< BitSet< N, usize > >::operator^= ( const BitStore< Rhs > & rhs)
inlineinherited

In-place XOR with another equal-sized bit-store.

Note
In debug mode, this method panics if the lengths of the two bit-stores do not match.

Example

v1 ^= ~v1;
assert_eq(v1.to_string(), "1111111111");

◆ operator|()

auto gf2::BitStore< BitSet< N, usize > >::operator| ( const BitStore< Rhs > & rhs) const
inlineinherited

Returns a new bit-vector that is the OR of the current bit-store and another equal-sized bit-store.

Note
In debug mode, this methods panics if the lengths of lhs and rhs do not match.

Example

auto v2 = ~v1;
auto v3 = v1 | v2;
assert_eq(v3.to_string(), "1111111111");

◆ operator|=()

void gf2::BitStore< BitSet< N, usize > >::operator|= ( const BitStore< Rhs > & rhs)
inlineinherited

In-place OR with another equal-sized bit-store.

Note
In debug mode, this method panics if the lengths of the two bit-stores do not match.

Example

v1 |= ~v1;
assert_eq(v1.to_string(), "1111111111");

◆ operator~()

auto gf2::BitStore< BitSet< N, usize > >::operator~ ( ) const
inlineinherited

Returns a new bit-vector that has the same bits as the current bit-store but with all the bits flipped.

Example

assert_eq(v.to_string(), "1010101010");
auto w = ~v;
assert_eq(w.to_string(), "0101010101");

◆ previous_set()

std::optional< usize > gf2::BitStore< BitSet< N, usize > >::previous_set ( usize index) const
inlineinherited

Returns the index of the previous set bit before index in the store or {} if there are none.

Example

auto v = BitVec<u8>::zeros(37);
assert(v.previous_set(36) == std::optional<usize>{});
v.set(2);
v.set(27);
assert(v.previous_set(36) == std::optional<usize>{27});
assert(v.previous_set(27) == std::optional<usize>{2});
assert(v.previous_set(2) == std::optional<usize>{});

◆ previous_unset()

std::optional< usize > gf2::BitStore< BitSet< N, usize > >::previous_unset ( usize index) const
inlineinherited

Returns the index of the previous unset bit before index in the store or {} if no more unset bits exist.

Example

auto v = BitVec<u8>::ones(37);
assert(v.previous_unset(0) == std::optional<usize>{});
v.set(2, false);
v.set(27, false);
assert(v.previous_unset(36) == std::optional<usize>{27});
assert(v.previous_unset(27) == std::optional<usize>{2});
assert(v.previous_unset(2) == std::optional<usize>{});
BitVec empty;
assert(empty.previous_unset(0) == std::optional<usize>{});
std::optional< usize > previous_unset(usize index) const
Returns the index of the previous unset bit before index in the store or {} if no more unset bits exi...
Definition BitStore.h:901

◆ random_fill()

auto gf2::BitStore< BitSet< N, usize > >::random_fill ( double p = 0.5,
u64 seed = 0 )
inlineinherited

Fill the store with random bits and returns a reference to this for chaining.

The default call random_fill() sets each bit to 1 with probability 0.5 (fair coin).

Parameters
pThe probability of the elements being 1 (defaults to a fair coin, i.e. 50-50).
seedThe seed to use for the random number generator (defaults to 0, which means use entropy).
Note
If p < 0 then the fill is all zeros, if p > 1 then the fill is all ones.

Example

BitVec u{10}, v{10};
u64 seed = 1234567890;
u.random_fill(0.5, seed);
v.random_fill(0.5, seed);
assert(u == v);
auto random_fill(double p=0.5, u64 seed=0)
Fill the store with random bits and returns a reference to this for chaining.
Definition BitStore.h:560
std::uint64_t u64
Word type alias for a 64-bit unsigned integer.
Definition unsigned_word.h:38

◆ riffle_into()

void gf2::BitStore< BitSet< N, usize > >::riffle_into ( BitVec< word_type > & dst) const
inlineconstexprinherited

Interleaves the bits of this bit-store with zeros storing the result into the bit-vector dst.

On return, dst will have the bits of this bit-store interleaved with zeros. For example, if this bit-store has the bits abcde then dst will have the bits a0b0c0d0e.

Note
There is no last zero bit in dst.

Example

auto v = BitVec<u8>::ones(10);
v.riffle_into(dst);
assert_eq(dst.to_string(), "1010101010101010101");
constexpr void riffle_into(BitVec< word_type > &dst) const
Interleaves the bits of this bit-store with zeros storing the result into the bit-vector dst.
Definition BitStore.h:1181

◆ riffled()

auto gf2::BitStore< BitSet< N, usize > >::riffled ( ) const
inlineconstexprinherited

Returns a new bit-vector that is the result of riffling the bits in this bit-store with zeros.

If bit-store has the bits abcde then the output bit-vector will have the bits a0b0c0d0e.

Note
There is no last zero bit in dst.

Example

auto v = BitVec<u8>::ones(10);
auto dst = v.riffled();
assert_eq(dst.to_string(), "1010101010101010101");

◆ set()

auto gf2::BitStore< BitSet< N, usize > >::set ( usize index,
bool value = true )
inlineinherited

Sets the bit-element at the given index to the specified boolean value & returns this for chaining. The default value for value is true.

Note
In debug mode the index is bounds-checked.

Example

BitVec v{10};
assert_eq(v.get(0), false);
v.set(0);
assert_eq(v.get(0), true);

◆ set_all()

auto gf2::BitStore< BitSet< N, usize > >::set_all ( bool value = true)
inlineinherited

Sets the bits in the store to the boolean value and returns a reference to this for chaining.

By default, all bits are set to true.

Example

auto v = BitVec<u8>::zeros(10);
v.set_all();
assert_eq(v.to_string(), "1111111111");

◆ set_bit_indices()

auto gf2::BitStore< BitSet< N, usize > >::set_bit_indices ( ) const
inlineconstexprinherited

Returns an iterator over the indices of any set bits in the bit-store.

You can use this iterator to iterate over the set bits in the store and get the index of each bit.

Example

assert_eq(v.to_string(), "1010101010");
auto indices = std::ranges::to<std::vector>(v.set_bit_indices());
assert_eq(indices, (std::vector<usize>{0, 2, 4, 6, 8}));

◆ set_word() [1/2]

template<usize N, unsigned_word Word = usize>
void gf2::BitSet< N, Word >::set_word ( usize i,
Word word )
inlineconstexpr

Sets word i in the bitset's underlying word store to value (masked if necessary).

The final word in the store may not be fully occupied but we ensure that unused bits remain set to 0.

Note
In debug mode the index is bounds checked.

Example

assert_eq(v.to_string(), "0000000000");
v.set_word(1, 0b1111'1111);
assert_eq(v.to_string(), "0000000011");
assert_eq(v.count_ones(), 2);
constexpr void set_word(usize i, Word word)
Sets word i in the bitset's underlying word store to value (masked if necessary).
Definition BitSet.h:96

◆ set_word() [2/2]

void gf2::BitStore< BitSet< N, usize > >::set_word ( usize i,
word_type value )
inlineconstexprinherited

This method sets "word" at index i to the specified value.

For example, if the store has 18 bit elements, then setting the first word changes bit elements 0 through 7, the second word changes bit elements 8 through 15, and the third word changes bit elements 16 and 17.

This method is trivially implemented by the BitVec class. However, the bits in a BitSpan may not be aligned to word boundaries but that class synthesises words as if they were by combining adjacent words as needed.

Note
The method must ensure that inaccessible bits in the underlying store are not changed by this call.

◆ size()

template<usize N, unsigned_word Word = usize>
usize gf2::BitSet< N, Word >::size ( ) const
inlineconstexpr

Returns the number of bit-elements in the bitset.

Example

assert_eq(v.size(), 10);
constexpr usize size() const
Returns the number of bit-elements in the bitset.
Definition BitSet.h:46

◆ span()

auto gf2::BitStore< BitSet< N, usize > >::span ( usize begin,
usize end ) const
inlineconstexprinherited

Returns an immutable bit-span encompassing the bits in the half-open range [begin, end).

Immutability here is deep – the interior pointer in the returned span is to const words.

Note
This method panics if the bit-store is empty or if the range is not valid.

Example

auto v = BitVec<>::alternating(10);
auto s = v.span(1,5);
assert_eq(s.to_string(), "0101");

◆ split_at()

void gf2::BitStore< BitSet< N, usize > >::split_at ( usize at,
BitVec< word_type > & left,
BitVec< word_type > & right ) const
inlineconstexprinherited

Views a bit-store as two parts containing the elements [0, at) and [at, size()) respectively.

Clones of the parts are stored in the passed bit-vectors left and right.

On return, left contains the bits from the start of the bit-vector up to but not including at and right contains the bits from at to the end of the bit-vector. This bit-vector itself is not modified.

This lets one reuse the left and right destinations without having to allocate new bit-vectors. This is useful when implementing iterative algorithms that need to split a bit-vector into two parts repeatedly.

Note
This method panics if the split point is beyond the end of the bit-vector.

Example

auto v = BitVec<>::alternating(10);
BitVec left, right;
v.split_at(5, left, right);
assert_eq(left.to_string(), "10101");
assert_eq(right.to_string(), "01010");
assert_eq(v.to_string(), "1010101010");
constexpr void split_at(usize at, BitVec< word_type > &left, BitVec< word_type > &right) const
Views a bit-store as two parts containing the elements [0, at) and [at, size()) respectively.
Definition BitStore.h:1132

◆ store_words()

auto gf2::BitStore< BitSet< N, usize > >::store_words ( ) const
inlineconstexprinherited

Returns a const iterator over all the words underlying the bit-store.

You can use this iterator to iterate over the words in the store and read the Word value of each word. Note that you cannot use this iterator to modify the words in the store.

Note
The words here may be a synthetic construct. The expectation is that the bit 0 in the store is located at the bit-location 0 of word(0). That is always the case for bit-vectors but bit-slices typically synthesise "words" on the fly from adjacent pairs of bit-vector words. Nevertheless, almost all the methods in BitStore are implemented efficiently by operating on those words.

Example

auto v = BitVec<u8>::ones(10);
assert_eq(v.to_string(), "1111111111");
auto indices = std::ranges::to<std::vector>(v.store_words());
assert_eq(indices, (std::vector<u8>{0b1111'1111, 0b0000'0011}));

◆ sub()

auto gf2::BitStore< BitSet< N, usize > >::sub ( usize begin,
usize end ) const
inlineconstexprinherited

Returns a clone of the elements in the half-open range [begin, end) as a new bit-vector.

Note
This method panics if the bit-vector is empty or if the range is not valid.

Example

auto v = BitVec<>::alternating(10);
auto s = v.sub(1,5);
assert_eq(s.to_string(), "0101");
s.set_all();
assert_eq(s.to_string(), "1111");
assert_eq(v.to_string(), "1010101010");

◆ swap()

auto gf2::BitStore< BitSet< N, usize > >::swap ( usize i0,
usize i1 )
inlineconstexprinherited

Swaps the bits in the bit-store at indices i0 and i1 and returns this for chaining.

Note
In debug mode, panics if either of the indices is out of bounds.

Example

auto v = BitVec<>::zeros(10);
v.set(0);
assert_eq(v.to_string(), "1000000000");
v.swap(0, 1);
assert_eq(v.to_string(), "0100000000");
v.swap(0, 1);
assert_eq(v.to_string(), "1000000000");
v.swap(0, 9);
assert_eq(v.to_string(), "0000000001");
v.swap(0, 9);
assert_eq(v.to_string(), "1000000000");

◆ to_binary_string()

std::string gf2::BitStore< BitSet< N, usize > >::to_binary_string ( std::string_view sep = "",
std::string_view pre = "",
std::string_view post = "" ) const
inlineinherited

Returns a binary string representation of the store.

The string is formatted as a sequence of 0s and 1s with the least significant bit on the right.

Parameters
sepThe separator between bit elements which defaults to no separator.
preThe prefix to add to the string which defaults to no prefix.
postThe postfix to add to the string which defaults to no postfix.

Example

BitVec v{10};
assert_eq(v.to_binary_string(), "0000000000");
v.set(0);
assert_eq(v.to_binary_string(), "1000000000");
assert_eq(v.to_binary_string(",", "[", "]"), "[1,0,0,0,0,0,0,0,0,0]");
std::string to_binary_string(std::string_view sep="", std::string_view pre="", std::string_view post="") const
Returns a binary string representation of the store.
Definition BitStore.h:1641

◆ to_hex_string()

std::string gf2::BitStore< BitSet< N, usize > >::to_hex_string ( ) const
inlineinherited

Returns the "hex" string representation of the bits in the bit-store.

The output is a string of hex characters without any spaces, commas, or other formatting.

The string may have a two character suffix of the form ".base" where base is one of 2, 4 or 8.
All hex characters encode 4 bits: "0X0" -> 0b0000, "0X1" -> 0b0001, ..., "0XF" -> 0b1111.
The three possible ".base" suffixes allow for bit-vectors whose length is not a multiple of 4.
Empty bit-vectors are represented as the empty string.

  • 0X1 is the hex representation of the bit-vector 0001 => length 4.
  • 0X1.8 is the hex representation of the bit-vector 001 => length 3.
  • 0X1.4 is the hex representation of the bit-vector 01 => length 2.
  • 0X1.2 is the hex representation of the bit-vector 1 => length 1.

The output is in vector-order. If "h0" is the first hex digit in the output string, you can print it as four binary digits v_0v_1v_2v_3. For example, if h0 = "A" which is 1010 in binary, then v = 1010.

Example

BitVec v0;
assert_eq(v0.to_hex_string(), "");
auto v1 = BitVec<>::ones(4);
assert_eq(v1.to_hex_string(), "F");
auto v2 = BitVec<>::ones(5);
assert_eq(v2.to_hex_string(), "F1.2");
auto v3 = BitVec<>::alternating(8);
assert_eq(v3.to_binary_string(), "10101010");
assert_eq(v3.to_hex_string(), "AA");
std::string to_hex_string() const
Returns the "hex" string representation of the bits in the bit-store.
Definition BitStore.h:1704

◆ to_pretty_string()

std::string gf2::BitStore< BitSet< N, usize > >::to_pretty_string ( ) const
inlineinherited

Returns a "pretty" string representation of the store.

The output is a string of 0's and 1's with spaces between each bit, and the whole thing enclosed in square brackets.

Example

auto v = BitVec<>::alternating(10);
assert_eq(v.to_pretty_string(), "[1,0,1,0,1,0,1,0,1,0]");
BitVec empty;
assert_eq(empty.to_pretty_string(), "[]");
std::string to_pretty_string() const
Returns a "pretty" string representation of the store.
Definition BitStore.h:1623

◆ to_string()

std::string gf2::BitStore< BitSet< N, usize > >::to_string ( std::string_view sep = "",
std::string_view pre = "",
std::string_view post = "" ) const
inlineinherited

Returns a binary string representation of the store.

The string is formatted as a sequence of 0s and 1s with the least significant bit on the right.

Parameters
sepThe separator between bit elements which defaults to no separator.
preThe prefix to add to the string which defaults to no prefix.
postThe postfix to add to the string which defaults to no postfix.

Example

BitVec v{10};
assert_eq(v.to_string(), "0000000000");
v.set(0);
assert_eq(v.to_string(), "1000000000");
assert_eq(v.to_string(",", "[", "]"), "[1,0,0,0,0,0,0,0,0,0]");

◆ to_words()

auto gf2::BitStore< BitSet< N, usize > >::to_words ( ) const
inlineconstexprinherited

Returns a copy of the words underlying this bit-store.

Note
The last word in the vector may not be fully occupied but unused slots will be all zeros.

Example

auto v = BitVec<u8>::ones(10);
auto words = v.to_words();
assert_eq(words, (std::vector<u8>{0b1111'1111, 0b0000'0011}));
constexpr usize words() const
Returns the number of words in the bitset's underlying word store.
Definition BitSet.h:59

◆ trailing_zeros()

usize gf2::BitStore< BitSet< N, usize > >::trailing_zeros ( ) const
inlineconstexprinherited

Returns the number of trailing zeros in the store.

Example

auto v = BitVec<u8>::zeros(27);
assert_eq(v.trailing_zeros(), 27);
v.set(0);
assert_eq(v.trailing_zeros(), 26);

◆ unset_bit_indices()

auto gf2::BitStore< BitSet< N, usize > >::unset_bit_indices ( ) const
inlineconstexprinherited

Returns an iterator over the indices of any unset bits in the bit-store.

You can use this iterator to iterate over the unset bits in the store and get the index of each bit.

Example

assert_eq(v.to_string(), "1010101010");
auto indices = std::ranges::to<std::vector>(v.unset_bit_indices());
assert_eq(indices, (std::vector<usize>{1, 3, 5, 7, 9}));

◆ word()

template<usize N, unsigned_word Word = usize>
Word gf2::BitSet< N, Word >::word ( usize i) const
inlineconstexpr

Returns word i from the bitset's underlying word store.

The final word in the store may not be fully occupied but we guarantee that unused bits are set to 0.

Note
In debug mode the index is bounds checked.

Example

assert_eq(v.to_string(), "0000000000");
v.set_all();
assert_eq(v.to_string(), "1111111111");
assert_eq(v.words(), 2);
assert_eq(v.word(0), 0b1111'1111);
assert_eq(v.word(1), 0b0000'0011);
constexpr Word word(usize i) const
Returns word i from the bitset's underlying word store.
Definition BitSet.h:77

◆ words()

template<usize N, unsigned_word Word = usize>
usize gf2::BitSet< N, Word >::words ( ) const
inlineconstexpr

Returns the number of words in the bitset's underlying word store.

The bit-elements are packed into a standard array with this number of words.

Example

assert_eq(v0.words(), 2);
assert_eq(v1.words(), 1);